Java 基础
Java 容器
Java 并发
设计模式
目录

线程相关类

# 线程相关类

# FutureTask

在介绍 Callable 时我们知道它可以有返回值,返回值通过 Future<V> 进行封装。FutureTask 实现了 RunnableFuture 接口,该接口继承自 Runnable 和 Future<V> 接口,这使得 FutureTask 既可以当做一个任务执行,也可以有返回值。

public class FutureTask<V> implements RunnableFuture<V>
1
public interface RunnableFuture<V> extends Runnable, Future<V>
1

FutureTask 可用于异步获取执行结果或取消执行任务的场景。当一个计算任务需要执行很长时间,那么就可以用 FutureTask 来封装这个任务,主线程在完成自己的任务之后再去获取结果。

package com.code.concurrent.example14;

public class FutureTaskExample {

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        FutureTask<Integer> futureTask = new FutureTask<Integer>(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                int result = 0;
                for (int i = 0; i < 100; i++) {
                    Thread.sleep(10);
                    result += i;
                }
                return result;
            }
        });

        Thread computeThread = new Thread(futureTask);
        computeThread.start();

        Thread otherThread = new Thread(() -> {
            System.out.println("wait task is running...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        otherThread.start();
        System.out.println(futureTask.get());
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
wait task is running...
4950
1
2

# BlockingQueue

java.util.concurrent.BlockingQueue 接口有以下阻塞队列的实现:

  • FIFO 队列 :LinkedBlockingQueue、ArrayBlockingQueue(固定长度)
  • 优先级队列 :PriorityBlockingQueue

提供了阻塞的 take() 和 put() 方法:如果队列为空 take() 将阻塞,直到队列中有内容;如果队列为满 put() 将阻塞,直到队列有空闲位置。

使用 BlockingQueue 实现生产者消费者问题

package com.code.concurrent.example15;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class ProducerConsumer {

    private static BlockingQueue<String> queue = new ArrayBlockingQueue<>(5);

    static class Producer extends Thread {
        @Override
        public void run() {
            try {
                queue.put("product");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.print("produce..");
        }
    }

    static class Consumer extends Thread {

        @Override
        public void run() {
            try {
                String product = queue.take();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.print("consume..");
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package com.code.concurrent.example15;

public class Main {
    public static void main(String[] args) {
        for (int i = 0; i < 2; i++) {
            ProducerConsumer.Producer producer = new ProducerConsumer.Producer();
            producer.start();
        }
        for (int i = 0; i < 5; i++) {
            ProducerConsumer.Consumer consumer = new ProducerConsumer.Consumer();
            consumer.start();
        }
        for (int i = 0; i < 3; i++) {
            ProducerConsumer.Producer producer = new ProducerConsumer.Producer();
            producer.start();
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
produce..consume..produce..consume..produce..consume..produce..produce..consume..consume..
1

# ForkJoin

主要用于并行计算中,和 MapReduce 原理类似,都是把大的计算任务拆分成多个小任务并行计算。

package com.code.concurrent.example16;

public class ForkJoinExample extends RecursiveTask<Integer> {

    private final int threshold = 5;
    private int first;
    private int last;

    public ForkJoinExample(int first, int last) {
        this.first = first;
        this.last = last;
    }

    @Override
    protected Integer compute() {
        int result = 0;
        if (last - first <= threshold) {
            // 任务足够小则直接计算
            for (int i = first; i <= last; i++) {
                result += i;
            }
        } else {
            // 拆分成小任务
            int middle = first + (last - first) / 2;
            ForkJoinExample leftTask = new ForkJoinExample(first, middle);
            ForkJoinExample rightTask = new ForkJoinExample(middle + 1, last);
            leftTask.fork();
            rightTask.fork();
            result = leftTask.join() + rightTask.join();
        }
        return result;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package com.code.concurrent.example16;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;

public class Main {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        ForkJoinExample example = new ForkJoinExample(1, 10000);
        ForkJoinPool forkJoinPool = new ForkJoinPool();
        Future result = forkJoinPool.submit(example);
        System.out.println(result.get());
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13

ForkJoin 使用 ForkJoinPool 来启动,它是一个特殊的线程池,线程数量取决于 CPU 核数。

public class ForkJoinPool extends AbstractExecutorService
1

ForkJoinPool 实现了工作窃取算法来提高 CPU 的利用率。每个线程都维护了一个双端队列,用来存储需要执行的任务。工作窃取算法允许空闲的线程从其它线程的双端队列中窃取一个任务来执行。窃取的任务必须是最晚的任务,避免和队列所属线程发生竞争。例如下图中,Thread2 从 Thread1 的队列中拿出最晚的 Task1 任务,Thread1 会拿出 Task2 来执行,这样就避免发生竞争。但是如果队列中只有一个任务时还是会发生竞争。